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Abstract

A recent calculation of the antisymmetric stretch frequency for the rectangular structure

of quartet 04+ using the QCISD(T) method gave a value of 3710 cm -1. This anomalous

frequency is shown to be a consequence of symmetry breaking effects, which occur even

though the QCISD(T) solution derived from a delocalized SCF reference function lies

energetically well below the two localized (symmetry-broken) solutions at the equilibrium

geometry. The symmetry breaking is almost eliminated at the CCSD level of theory, but

the small remaining symmetry breaking effects are magnified at the CCSD(T) level of

theory so that the antisymmetric stretch frequency is still significantly in error. The use

Brueckner coupled cluster method, however, leazis to a symmetrical solution which is free

of symmetry breaking effects, with an antisymmetric stretch frequency of 1322 cm -1, in

good agreement with our earlier calculations using the CASSCF/CASSI method.
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Introduction

Recently, Peel [1] reported ab initio calculations on some high symmetry isomers of quar-

tet O + using the singles and doubles quadratic configuration interaction method with a

perturbational estimate of connected triple excitations (QCISD(T)) [2]. For the rectan-

gular structure, he obtained an antisymmetric stretch frequency of 3710 cm -1, which he

noted was "unphysical", but nevertheless was used to give a large zero-point correction

to the energy of this isomer.

Previously [3], we had carried out a detailed study of several structures of quartet O +, com-

puting amongst other things vibrational frequencies, relative energies and isotopic shifts.

The methods used included complete active space self consistent field (CASSCF) [4],

restricted active space self consistent field (RASSCF) [5], a second order perturbation

method based on a CASSCF reference function (CASPT2) [6] and a non-orthogonal CI

method based on non-orthogonal CASSCF or RASSCF solutions (the complete/restricted

active space state interaction (CASSI/RASSI) method [7]), using large generally con-

tracted atomic natural orbital basis sets. These methods gave good results and prompted

a new analysis [8] of the experimental vibrational spectrum of O +, which supported our

assignment. Of particular importance for the current work is our detailed analysis of

symmetry breaking effects in the calculation of the antisymmetric stretch frequency for

quartet O +. We showed that spurious frequencies for quartet O + were due to symme-

try breaking effects due to the competition between localized and delocalized structures

-- we refer the reader to our original work [3], where we also give many references to

earlier work on symmetry breaking. In our case, the symmetry breaking effects were re-

solved through the use of the CASSI method, allowing the two non-orthogonal "localized"

CASSCF wavefunctions to interact and give the correct qualitative form for the potential

energy surface.

On the basis of the form of the potential curve for the antisymmetric stretch around

the equilibrium point for the rectangular structure, Peel [1] concluded that no symme-

try breaking effects were evident at the QCISD(T) level of theory. In the first part of

this work we demonstrate that this is incorrect: symmetry breaking effects are entirely

responsible for the anomalous antisymmetric stretch frequency of 3710 cm -1. For con-

sistency, we use the same methods as in Ref. [1] -- QCISD(T) calculations based on an

unrestricted Hartree Fock (UHF) reference function and a 6-31G basis set. The geometry

(Roo=1.186 /_, RCM=2.378 _) was also taken from Ref. [1]. Roo is the intra-fragment

O-O bond distance, RCM is the inter-fragment bond distance (the distance between the

center of masses of the two fragments). The rectangular structure is illustrated in Fig. 1 (a),

which also shows Roo and RCM.

Following this, we give the results of calculations at the CCSD(T) level of theory (singles

and doubles coupled-cluster plus a perturbational estimate of the effects of connected

triples excitations [9]). The geometry is reoptimized and from the computed potential

curves and frequencies it is evident that symmetry breaking effects also occur at the

CCSD(T) level of theory. Brueckner coupled cluster theory [10]-[15] has previously been

used to treat symmetry breaking effects at the coupled cluster level of theory [16]. We



have applied this approach to the rectangular structure of quartet O +, using Brueckner

coupled cluster calculations which include a perturbational estimate of the effects of con-

nected triples excitations (BD(T)) [14], with semi-canonical orbitals [17]. Since we are

interested in the qualitative nature of the results, rather than strictly quantitative results,

we continue to use the 6-31G* basis set and UHF reference function, rather than the larger

generally contracted basis sets of our earlier study [3]. We note that in the CCSD(T) and

BD(T) calculations, all electrons are correlated, whereas in the QCISD and QCISD(T)

calculations, the is core electrons were not correlated.

The calculations were performed with the ACES II x suite of programs using IBM RISC

SYSTEM/6000 computers at NASA Ames Research Center.

Results and Discussion

As discussed in detail in our previous work [3], the symmetry breaking in O + is mani-

fested by the existence of a delocalized solution, which exhibits D2h symmetry, and two

localized solutions exhibiting C2_ symmetry which are mirror images of each other, having

equal energies at the symmetric (D_h) point. The structures axe illustrated in Fig. 1, with

Fig. l(a) showing the symmetric geometry, and Figs. l(b) and (c) showing the two symme-

try broken localized solutions. In each case, the shorter O-O bond distance corresponds

closely to the bond distance of O +, whereas the longer bond distance corresponds closely

to the bond distance of O_ [31. Thus the positive charge is localized on the bottom 02

unit in Fig. l(b), and on the top O_ unit in Fig. l(c). The symmetry breaking vibrational

mode is the intra-fragment antisymmetric stretch ws, and this is illustrated in Figs. l(b)

and (c) by the arrows.

In Table I, we give the total energies of the different solutions at the UHF, QCISD and

QCISD(T) levels of theory. Comparing the total energy at the QCISD(T) level with

that given in Ref. [1], we see that the results of Ref. [1] are based on the delocalized

reference function. It is interesting to compare the energy differences of the delocalized

and localizedsolutionsat the various levelsof theory. At the UHF and QCISD levels

of theory, the localizedsolution is below the delocalizedsolution by about 3 kcal/mol.

However, at the QCISD(T) levelof theory,the localizedsolutionismore than 7 kcal/mol

higher in energy than the delocalizedsolution. Thus itseems that the D2h structure is

favoured at the highest levelof theory.

To understand the origin of the spurious frequency at the QCISD(T) level of theory, we

have computed the energy as a function of the antisymmetric stretch coordinate (see

1ACES II is a computational chemistry package especially designed for coupled cluster and many body

perturbation calculations. The SCF, transformation, correlation energy and gradient codes were written
by J. F. Stanton, J. Gauss, J. D. Watts, W. J. Lauderdale and R. J. Bartlett. The two-electron integrals
are taken from the vectorized MOLECULE code of J. Alml6f and P. R. Taylor. ACES II includes a
modified version of the ABACUS integral derivatives program, written by T. Helgaker, H. J. Jensen, P.
JCrgensen, J. Olsen, and P. R. Taylor, and the geometry optimization and vibrational analysis package
written by J. F. Stanton and D. E. Bernholdt.
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also Refs. [1] and [3]). The results are presented in Figs. 2-4, where we have used the

same scales in order to facilitate comparison of the different curvatures resulting from

the different methods. The delocalized solution is given by Ea,l and the two localized

solutions are given by E_ and Eb in each case. Also given in Figs. 3 and 4 are curves at

the CCSD, CCSD(T), BD and BD(T) level of theory, which we discuss later. Using the

notation of Figs. l(b) and (c), AR is defined as R1-R_.

The behaviour of the energy at the correlated level of theory is driven by the behaviour

of the UHF energies, given in Fig. 2. The delocalized solution lies above the localized

solutions, and as we follow the antisymmetric coordinate, the delocalized solution rapidly

approaches the localized solutions, until at ARm0.0185 /_ the localized and delocalized

solutions merge. Thus the QCISD and QCISD(T) energies are constrained by this fact

-- the delocalized energy and one of the localized energies (depending on whether the

distortion is positive or negative) must be equal at ARmO.O185 ._. In Fig. 3, we see that

at the QCISD level of theory the energies are significantly better in the sense that the

localized solution energies are much flatter (tending towards delocalized solutions). In
this case the flatness of the localized solutions means that the delocalized solution is

driven down in energy in order to meet the constraint of equal energy at ARm0.0185 /_,

leading to an imaginary frequency at the QCISD level of theory. At the QCISD(T) level of

theory (Fig. 4) the delocalized solution is well below the localized solution, and so is driven

rapidly upward to meet the equal energy constraint, resulting in the very large 3710 cm -_

frequency. Thus the QCISD method does not entirely overcome the inherent problems

with the UHF reference function, and the triples perturbation correction is unable to

overcome the residual problems with the QCISD method. We note that we found similar

problems with the CASPT2 method, which was not able to overcome the problems of a

localized CASSCF reference function [3].

In Tables II and III we present the results from the CCSD(T) calculations. From the

energy separations, we see that while the UHF separation is very similar to that given in

Table I (which has a slightly different geometry), the CCSD and CCSD(T) separations

are very different to those at the QCISD and QCISD(T) levels of theory. The delocal-

ized and localized solutions are very close in energy at the CCSD level of theory, and

unlike the QCISD results the localized solution is above the delocalized solution. As for

the QCISD(T) results, the perturbational triples correction increases the separation be*

tween the delocalized and localized solutions at the CCSD(T) theory when compared with

CCSD, although the effect is much smaller than the QCISD and QCISD(T) difference.

We note that one difference between the QCISD and CCSD calculations was that the Is

core electrons were excluded from the calculations at the QCISD and QCISD(T) levels of

theory, whereas they were included in the calculations at the CCSD and CCSD(T) levels

of theory. To check whether this difference has any effect on the symmetry breaking at the

QCISD/QCISD(T) level of theory, we also computed the separation between the delocal-

ized and localized solutions at the symmetric point including the ls electrons using these

methods. The separations are barely different from the original results, so we conclude

that removing the core 18 electrons from the QCISD calculations is not the cause of the

largedifferencebetween the CCSD/CCSD(T) and QCISD/QCISD(T) results.

In Figs. 3 and 4 we present the CCSD and CCSD(T) potential curves for the _atisymmetric



stretch, which may be comparedwith the QCISD and QCISD(T) curves on the same

figures. The behaviour of the UHF reference function energies around the CCSD(T)

equilibrium geometry for the antisymmetric stretch is very similar to that given in Fig. 2

around the QCISD(T) equilibrium geometry, so we may discuss the CCSD and CCSD(T)

curves in the same light as the QCISD and QCISD(T) curves. Thus the CCSD and

CCSD(T) energies have similar constraints to the QCISD and QCISD(T) energies --

irrespective of the separation at AR=0 (the symmetric geometry), at AR_0.0185h the

delocalized and one of the localized energies must be equal. Inspection of the curves shows

that this is so. However, the most striking difference between the CCSD and QCISD

curves comes from the fact that the curves at the CCSD level are much closer together,

so that this constraint has only a small effect on the antisymmetric stretch frequency at

the CCSD level of theory. In fact, the antisymmetric stretch frequency at the CCSD level

of theory is a very reasonable 1220 cm -1 (at the CCSD equilibrium geometry), which is

to be compared with a value of around 1500i cm -1 at the QCISD level of theory. Overall,

we see that the CCSD approach has almost eliminated the symmetry breaking effects.

As discussed above, the addition of the perturbative triples correction increases the sep-

aration between the delocalized and localized solutions at the symmetric point, and this

is evident in Fig. 4. Thus the delocalized curve at the CCSD(T) level is more affected

by symmetry breaking than the CCSD curve, although this effect is much smaller than

that found with the QCISD(T) method. Thus the antisymmetric stretch frequency at

the CCSD(T) level is 1922 cm -1, compared with 3710 cm -1 at the QCISD(T) level of

theory. The origin of this difference is quite evident from the potential curves -- it is the

large difference in separations at the symmetric point. The other remarkable feature of

the CCSD(T) potential curves is the near coincidence of the two localized curves, which

is again quite different to the QCISD(T) results. Thus the CCSD(T) approach is quite

close to removing the symmetry breaking effects, but is still not able to overcome the

small deficiencies evident at the CCSD level of theory.

The geometry at the CCSD(T) level (Table III) is very similar to that found at the

QCISD(T) level of theory [1], and for the most part the frequencies are quite similar to

those given in Ref. [1]. The exceptions are the antisymmetric stretch ws (discussed above)

which changes from 3710 to 1922 cm -1, and the (inter-fragment) antisymmetric stretch

We which is reduced from 595 to 97 cm -1. The CCSD(T) value for w6 is in accord with our

earlier results [3] and the results for the trans-planar structure [1, 3]. Thus it seems that

the QCISD(T) value for w6 is significantly too high also. Considering Fig. 1, the mode w6

may be envisioned in an analogous way to ws, except that the distortion occurs along the

RCM direction instead of the Roo direction. Thus it is possible, though less likely (due

to the large inter-fragment bond distance RCM), for symmetry breaking effects to occur

for w6 also. This would involve localization on the left and right sides of O + rather than

the top and bottom, which occurs for ws. However, we have not investigated this in any

detail here.

The results at the BD(T) level of theory are given in Table IV. The geometry optimized

at the BD(T) level of theory is the same as that of the CCSD(T) level of theory (which

was constrained to have D2h symmetry, whereas the BD(T) calculation was not), and

the BD(T) energy is also very similar to the CCSD(T) energy. To investigate whether



symmetry breaking effectsare still presentat the BD(T) level of theory, we haveagain
plotted the energyasafunction of the antisymmetric distortion, andthe resultsaregiven
in Figs. 3-5.

As we sawpreviously, the behaviourof the correlatedmethods wasconstrained by the
behaviourof the referencefunction. In Fig. 5 we give the Bruecknerreferencedetermi-
nant energy and the UHF energyfrom which the Bruecknercalculation was initiated.
Beforediscussingtheseresults,weemphasizethat the comparisonbetweenthe Brueckner
referencedeterminant energy and the UHF energy is not rigourous since the Brueck-
ner referencedeterminant is a product of the correlated calculation. Nevertheless, it is

enlightening.

The UHF solutions of Fig. 5 are (qualitatively speaking) a subset of those given in Fig. 2.

The curve is discontinuous because we varied AR with a larger stepsize than for Fig. 2,

and the SCF converged to solutions on different potential curves at different points, rather

than the solution on the same potential curve as in Fig. 2. The character of the UHF

orbitals is of course very different for the different potential energy surfaces, varying from

delocalized to localized on the top of the molecule or localized on the bottom of the

molecule, and this variation is reflected in the energies. In contrast to this, the Brueckner

reference energy is very smooth despite the large changes in the UHF orbitals from which

it began, indicating that the Brueckner approach is not affected by the starting orbitals.

At the symmetric point we have also verified that the Brueckner method is independent

of the starting orbitals -- whether localized or delocalized UHF orbitals are used, the

Brueckner approach leads to the same symmetric (delocalized) solution. Thus there is only

one solution at the Brueckner level of theory. This behaviour is in accord with previous

studies [16] using the Brueckner approach for other systems which exhibit symmetry

breaking.

At the BD and BD(T) levels of theory (Figs. 3 and 4) we see that the antisymmetric

stretch is very smooth and gives a positive frequency, which is 1322 cm -1 at the BD(T)

level of theory (Table IV). It is interesting to compare the different curvatures for the

different methods in Figs. 3 and 4. It is evident that the CCSD and CCSD(T) curvatures

are much closer to the BD and BD(T) curves than are those from QCISD and QCISD(T).

We note from our previous study [3] that there is a significant basis set effect for the

antisymmetric stretch frequency. At the CASSI level using a TZ2P basis set, the an-

tisymmetric stretch was 1271 cm -1 whereas an ANO[5s4p2d] basis set gave a value of

1259 cm -1 and an ANO[fsSp3d2f] basis gave a value of 1296 cm -1. Considering the fact

that the BD(T) approach should give a larger proportion of the dynamical correlation

energy than our earlier frequency calculations at the CASSCF/CASSI level of theory, the

agreement between the BD(T) frequency and our earlier values is very good. Thus the

BD(T) results are very encouraging and in a large one particle basis this method should

give very accurate results. In our earlier work [3] we showed that the dipole derivative at

the CASSI level of theory was unphysically high. It would be of some interest to compute

this quantity at the BD(T) level (in a large one particle basis) to determine whether a

more reasonable dipole derivative would be obtained.

In Table IV we also give the symmetric stretch frequencies at the BD(T) level of theory.
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Given the agreementbetweenthe geometriesat the CCSD(T) and BD(T) levelsof theory,
it is not surprising that the symmetric stretch frequenciesare very similar for the two
methods (and alsoin good agreementwith the CASSCFresults [3]). These resultsalso
supportour earlierisotopicsubstitution analysis[3],whereweusedthe CASSCFfrequency
for the symmetricstretch and the CASSI frequencyfor the antisymmetric stretch.

To conclude,the antisymmetricstretch of quartet O + is significantly affected by symmetry

breaking. As we discussed previously [3], it is necessary to properly account for this before

a reliable frequency can be obtained. In the current work we have shown in detail how the

previous [1] antisymmetric stretch frequency at the QCISD(T) level of theory is affected

by symmetry breaking so that any analysis of the relative energies of the rectangular

and trans-planar structures which includes zero-point corrections based on this frequency

must be significantly in error. The CCSD approach gives significantly better results

than QCISD, almost eliminating the symmetry breaking effects. However, the small

remaining symmetry breaking effects are magnified at the CCSD(T) level of theory, so

that the antisymmetric stretch is still affected significantly at the CCSD(T) level. The

Brueckner coupled-cluster method (BD(T)), however, eliminates the symmetry breaking

effects entirely, giving a single symmetric solution with an antisymmetric stretch frequency

in good agreement with our earlier result at the CASSCF/CASSI level of theory [3]. This

must make the BD(T) approach the method of choice for very accurate calculations when

symmetry breaking is a potential problem and more than just a few electrons must be

correlated.
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Table I: Total energies(in Hartree) and energy differences (in kcal/mol) of quartet O + at

the rectangular (D2a) geometry, for the delocalized and localized solutions. The geometry

is taken from the QCISD(T) calculations of Ref.[1] (Roo=1.186 h,Rci=2.378 h)

Method Edel Elo¢ [ AE

UHF -298.7398444 -298.7439668 2.59

QCISD -299.4774306 -299.4830304 3.51

QCISD(T) -299.5050169 -299.4933392 -7.33

Table II: Total energies (in Hartree) and energy differences (in kcal/mol) of quartet O + at

the rectangular (D2h) geometry, for the delocalized and localized solutions. The geometry

is from the CCSD(T) approach, given in Table III

Method Edel

UHF -298.7406630

CCSD -299.4838322

CCSD(T) -299.5127862

Elo¢ I AE

-298.7447092 2.54

-299.4832236 --0.38

-299.5107674 -1.27
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